ECOLOGICALLY OR BIOLOGICALLY
SIGNIFICANT MARINE AREAS
in the Benguela Current Large Marine Ecosystem

Orange Cone
REVISED DESCRIPTION
Ecologically or Biologically Significant Marine Areas in the Benguela Current Large Marine Ecosystem

ORANGE CONE
Revised Description

Front cover image credits: ACEP, Linda Harris, Steve Benjamin, Geoff Spiby, Melanie Wells
Orange Cone

Revised EBSA Description

General Information

Summary
The Orange Cone is a transboundary area between Namibia and South Africa that spans the mouth of the Orange River (South Africa and Namibia’s major river in terms of run-off to the marine environment). The estuary is biodiversity-rich but modified, and the coastal area includes 10 threatened ecosystem types: two Critically Endangered, four Endangered and four Vulnerable types. The marine environment experiences slow, but variable currents and weaker winds, making it potentially favourable for reproduction of pelagic species. Furthermore, given the proven importance of river outflow for fish recruitment at the Thukela Banks (a comparable shallow, fine-sediment environment on the South African east coast), a similar ecological dependence for the inshore Orange Cone is likely. Evidence supporting this hypothesis is growing but has not yet been consolidated. Comparable estuarine/inshore habitats are not encountered for 300 km south (Olifants River) and over 1300 km north (Kunene) of this system. The Orange River Mouth is a transboundary Ramsar site between Namibia and South Africa. The river mouth also falls within the Tsau//Khaeb (Sperrgebiet) National Park in Namibia, is under consideration as a protected area by South Africa, and is also an Important Bird and Biodiversity Area. Although there are substantially impacted areas especially on the coast and in the estuary, much of the area remains in a natural state. In summary, this area is highly relevant in terms of: ‘Uniqueness or rarity’, ‘Importance for threatened, endangered or declining species and/or habitats’ and ‘Special importance for life history stages of species’.

Introduction of the area
The Orange Cone spans the coastal boundary between South Africa and Namibia. The Orange River estuary extends approximately 10 km inland of the sea in a hydrological sense, although estuarine-dependent species migrate much further upstream. The estuary is substantially modified but under rehabilitation. Boundaries of the marine area that is ecologically coupled to the estuary are not accurately known, but could be extensive: seasonally and inter-annually, the marine habitat affected by freshwater outflow varies from a few kilometres to hundreds of kilometres in the longshore direction during floods, particularly southwards (Shillington et al., 1990). This area is located 50 km north and south of the Orange River, extending 30 - 45 km offshore, and includes the full extent of the estuary. There are 16 marine and coastal ecosystem types represented in the area (Sink et al., 2012, 2019; Holness et al., 2014). The associated pelagic environment is characterized by upwelling, giving rise to cold waters with high productivity/chlorophyll levels (Lagabrielle 2009). However, the winds in the area are weaker compared to that to the north or south of the river mouth, leading to less local upwelling (Boyd, 1988). The site is presented as a Type 1 EBSA because it contains “Spatially stable features whose positions are known and individually resolved on the maps” (sensu Johnson et al., 2018).

Description of the location

EBSA Region
South-Eastern Atlantic
Revised delineation of the Orange Cone EBSA.
Description of location

The Orange River estuary is located at 29°S and forms the boundary between South Africa and Namibia. The northern and southern boundaries of the Orange Cone EBSA are located 50 km north and south of the Orange River, respectively, with the eastern boundary extending 30–45 km offshore, and includes the full extent of the estuary. However, the broader area has characteristics of the Orange Cone marine environment as far as 100 km offshore. This EBSA straddles coastal and marine areas within the national jurisdictions of South Africa and Namibia.

Area Details

Feature description of the area

There are 16 ecosystem types represented in this EBSA (Sink et al., 2012, 2019; Holness et al., 2014). The associated pelagic environment is characterized by upwelling, giving rise to cold waters with high productivity (Lagabrielle 2009). However, the winds in the Orange Cone are weaker than those north or south of the area, leading to some stratification (Boyd 1988). Moreover, currents in the inshore region, and indeed over much of the Orange Cone area, have slower speeds than those occurring further north or south, and movements in both upper and lower layers are dominated by diurnal and/or inertial motions (Iita et al., 2001, Largier and Boyd, 2001).

The river and estuary have received substantial research attention over the last decade; the adjacent marine environment much less so, apart from some research during the Large Marine Ecosystem (LME) project from 1995-2000. However, given the proven role of the Thukela River outflow for the recruitment of fish stocks in the adjacent marine area on the South African east coast (Turpie and Lamberth 2010), it is hypothesized that the Orange River plays a similar role on the South African west coast. Although not formally described, evidence is mounting to support this hypothesis, because there are seemingly many relationships between Orange River flow volumes and demersal, pelagic and nearshore fish biomass (S.J. Lamberth, pers.com, unpublished). For example, the sole fishery collapse was associated with a change in local sediment particle size, because it altered burying difficulty and exposure to predators. Also, anchovy (mostly juveniles) appear to be positively correlated with the size of the plume, because the plume probably serves as a turbidity refuge. Furthermore, the conditions in the area are consistent with the criteria proposed for supporting pelagic species’ reproduction (Parrish et al., 1983).

Because of a previous lack of research, the boundaries of the marine zone that is ecologically coupled to the estuary were not accurately known, but were thought to be extensive. For example, geological research suggests that the sediment from the Orange River travels as far north as southern Angola (1750 km north of the mouth), and makes up >80% of the dune sand along the Skeleton Coast in Namibia (Garzanti et al., 2014); according to these authors, “this is the longest cell of littoral sand transport documented so far”. A particular challenge to determining the river’s extent of influence is that the marine habitat affected by freshwater outflow varies greatly both seasonally and inter-annually, from a few to hundreds of kilometres in the longshore direction (mainly southwards) during floods (Shillington et al., 1990). Submarine delta deposits off the mouth of the Orange River extend 26 km offshore, and 112 km alongshore (Rodgers & Rau 2006). The terrigenous material exiting the Orange River has a heterogeneously integrated catchment signal (Hermann et al., 2016) that is generally confined to about 50 km from the shore (Rodgers & Rau 2006). Since the original description
of this EBSA, recent work on marine sediments and delineation of muddy sediment associated habitats have allowed a far more accurate delineation of the Orange Cone (Karenyi, 2014; Karenyi et al., 2016). It is largely these new data that were used to refine the Orange Cone EBSA boundary, which was noted in the original description as being an approximation that needed further research so it could be properly delineated. New, fine-scale coastal mapping (Harris et al., 2019) also allowed a more accurate coastal boundary to be delineated, with other recent data also included (e.g., Holness et al., 2014; Sink et al., 2012, 2019).

In terms of uniqueness of habitat (i.e., refuge for estuarine-dependent or partially dependent fish, and birds), approximately similar estuarine and adjacent inshore habitats are not encountered for over 300 km further south to the Olifants River and over 1300 km further north, until the Kunene River (Lamberth et al., 2008, van Niekerk et al., 2008). The fact that the estuary is a declared Ramsar site (Ramsar 2013; note that the adjacent Namibian and South African Ramsar sites were joined into a transboundary site) and an Important Bird and Biodiversity Area (IBA; BirdLife International 2013) is an important recognition of its importance to birds as well as other species. Altogether, 206 species have been recorded in the EBSA, including 4 threatened fish and condrichthian species (OBIS 2017).

Feature conditions and future outlook of the proposed area

The impact of reduced and altered flow at the estuary mouth and into the marine environment has had a negative impact on the estuarine habitat, including the salt marsh, which was exacerbated by inappropriate developments associated with mining at the site (van Niekerk and Turpie 2012). The impact of these changes on the marine offshore environment is not yet known. Both the flow regime (as it will reach the mouth and the marine area) and rehabilitation of the estuary and salt marsh area need to be addressed. However, an estuary management plan is in an advanced stage, and protected area status for the estuary is well advanced as well (van Niekerk and Turpie 2012). Regarding the marine and coastal habitats and biodiversity of the area, the coastline and inshore area to 30 m depth is under considerable threat from mining impacts and is currently unprotected (Sink et al., 2012).

Ecosystem threat status has been estimated in South Africa (Sink et al., 2012, 2019) and Namibia (Holness et al., 2014; Table in the Other relevant website address or attached documents section) by assessing the weighted cumulative impacts of various pressures (e.g., extractive resource use, pollution, development and others) on each ecosystem type. These include two Critically Endangered, four Endangered and four Vulnerable ecosystem types, and another one ecosystem type that is Vulnerable. The Critically Endangered status implies that very little (<= 20%) of the total area of the habitats assessed are in natural/pristine condition, and it is expected that important components of biodiversity pattern have been lost and that ecological processes heavily modified. However, within the area, much of the EBSA was assessed to be in good ecological condition (56%), some fair (33%), and a lesser extent (11%) in poor ecological condition.

References

Currie H., Grobler K., Kemper, J. 2008. Concept note, background document and management proposal for the declaration of Marine Protected Areas on and around the Namibian islands and adjacent coastal areas.

Mann BQ. 2000. Status Reports for Key Linefish Species. Durban: Oceanographic Research Institute Special Publication

Other relevant website address or attached documents

Summary of ecosystem types and threat status for the Orange Cone [data sources: Sink et al. (2019) and Holness et al. (2014)].

<table>
<thead>
<tr>
<th>Threat Status</th>
<th>Ecosystem Type</th>
<th>Area (km²)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critically</td>
<td>Namaqua Intermediate Sandy Beach</td>
<td>29.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Endangered</td>
<td>Namaqua Reflective Sandy Beach</td>
<td>3.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Endangered</td>
<td>Cool Temperate Large Fluvially Dominated Estuary</td>
<td>30.2</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Orange Cone Inner Shelf Mud Reef Mosaic</td>
<td>338.8</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>Orange Cone Muddy Mid Shelf</td>
<td>858.0</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>Southern Benguela Reflective Sandy Shore</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Vulnerable</td>
<td>Namaqua Exposed Rocky Shore</td>
<td>4.9</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Namaqua Kelp Forest</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Namaqua Mixed Shore</td>
<td>2.7</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Namaqua Inshore</td>
<td>322.9</td>
<td>10.2</td>
</tr>
<tr>
<td>Near Threatened</td>
<td>Southern Benguela Intermediate Sandy Shore</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Least Concern</td>
<td>Namaqua Sandy Mid Shelf</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Southern Benguela Dissipative Sandy Shore</td>
<td>1.8</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Southern Benguela Dissipative-Intermediate Sandy Shore</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Namaqua Estuarine Shore</td>
<td>4.3</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Namaqua Inner Shelf</td>
<td>1560.1</td>
<td>49.4</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td>3158.3</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Assessment of the area against CBD EBSA criteria

C1: Uniqueness or rarity **High**

Justification

In terms of habitat uniqueness (i.e., refugia for estuarine-dependent or partially estuarine-dependent fish and birds, and freshwater outflow to the marine environment), approximately similar estuarine and adjacent inshore habitat are not encountered for over 300 km further south to the Olifants River, and over 1300 km further north, until the Kunene River (van Niekerk et al., 2008, Lamberth et al., 2008). The marine area is fed by the estuarine outflow, and also has its own oceanographic characteristics in terms of inertial currents and stratification, thus being largely “sheltered” from Benguela System forcing (Boyd 1988, Largier and Boyd 2001) that influences the whole Benguela region. This system is also the longest cell of littoral sand transport that has been recorded to date, with sediment moving as much as 1750 km north to southern Angola, and providing 80% of the sand that comprises the dunes along the Namibian Skeleton Coast (Garzanti et al., 2014).

C2: Special importance for life-history stages of species **High**

Justification

A total of 33 fish species from 17 families have been captured from the Orange River estuary (van Niekerk et al., 2008). Out of these species, 34% showed some degree of estuarine (i.e., euryhaline) dependence, 24% were marine and the remaining 42% were freshwater species. The high diversity and abundance of estuarine-dependant and marine species suggests that this is an extremely important estuarine nursery area, especially for Kob species (van Niekerk and Turpie 2012), and not just a freshwater conduit as previously thought (van Niekerk et al., 2008). Certainly, oceanographic
conditions in the area are consistent with the criteria proposed by Parrish et al. (1983) for the reproduction of pelagic species, and the system is also hypothesised to play a similar role to that of the comparable Thukela River/Thukela Banks (on the South African east coast) where the freshwater outflow is proven to support recruitment of fish stocks (Turpie and Lamberth 2010). Evidence is continually mounting to confirm the role of the Orange Cone in supporting key life-history stages. For example, the area is the northern margin of the important west coast nursery ground for pelagic fish species with periodic spawning (Hutchings et al., 2002). The Orange Cone is also an important recruitment/nursery area and one of three primary population components for shallow water hake (Jansen et al., 2016). Furthermore, northern sections of the Orange Cone, particularly a coastal reef called “Mittag”, are important for the Namibian commercial rock lobster fishery (Currie et al., 2008).

The estuary and wetland area are also an important stopover site for migrating shorebirds and other waterbirds, and provides breeding habitat for birds such as White-breasted Cormorants (Crawford et al., 2013) and Cape Cormorants. However, due to the destruction of breeding islands by the 1988 flood, the latter have not bred there since (H. Kolberg pers. obs). The value of the site is recognised internationally with both Ramsar and IBA status. In fact, the Orange River Mouth Wetlands are said to be the sixth most important coastal wetlands for birds, supporting as many as 26000 individuals of 56 species (BirdLife International, 2018).

South of the Kunene River (over 1300 km to the north of the Orange River), the only permanently open estuaries on the west coast of the sub-region include the Orange, Olifants and Berg Rivers (Lamberth et al., 2008). Migration up and down the west coast of southern Africa by marine and estuarine species, e.g., Angolan dusky kob, and west coast steenbras, may be dependent on the availability of warm water refugia offered by these estuary mouths and their plumes, especially during upwelling months (Lamberth et al., 2008).

C3: Importance for threatened, endangered or declining species and/or habitats High

Justification
The area is also an important nursery for coastal fish species, such as kob (van Niekerk and Turpie 2012), which are overexploited (Mann 2000). The estuary includes important breeding habitat for Endangered Cape Cormorants (Crawford et al., 2016), and also contains Endangered Ludwig’s bustard and Vulnerable Damara Terns (Birdlife International, 2018). Four fish and condrichthian species recorded in the EBSA are threatened, including the Endangered Rostroraja albai and Mustelus mustelus, and Vulnerable Galeorhinus galeus and Squalus acanthias (OBIS 2017).

Ten of the 16 ecosystem types represented in this EBSA are threatened, including two Critically Endangered, four Endangered and four Vulnerable ecosystem types (Holness et al., 2014; Sink et al., 2019). Because ecosystem types are generally a very good surrogate for species-level biodiversity patterns, the implication, therefore, is that the species and biological communities that are associated with and unique to these habitats are similarly declining and threatened.

C4: Vulnerability, fragility, sensitivity, or slow recovery Medium

Justification
The estuarine salt marsh area is vulnerable and has been slow to show recovery despite rehabilitation efforts (van Niekerk and Turpie 2012). There has also been a marked decline in certain fish stocks that
were previously exploited in the region (Lamberth et al., 2008). Mining and habitat modification are thought to have had an impact with respect to these changes.

C5: Biological productivity **Medium**
Justification
Winds in the Orange Cone are weaker than those that occur to the north or south of the area, leading to some stratification (Boyd 1988). This, and the effect of the freshwater inflow, may serve to concentrate productivity within the area.

C6: Biological diversity **Medium**
Justification
Altogether, 206 species have been recorded in the Orange Cone EBSA (OBIS 2017). A high diversity of fish species (33 species from 17 families) has been captured from the Orange River estuary (van Niekerk et al., 2008), including freshwater, marine and estuarine-dependent species. The marine area served as the conduit supporting the estuary’s biodiversity for migratory marine and estuarine-dependent species, as well as marine pelagic and demersal species, including their juvenile stages. Furthermore, the fact that the estuary is a declared Ramsar site (Ramsar 2013) and an IBA (BirdLife International 2013) are important recognitions of its importance to birds and other species. There are 16 ecosystem types represented in this EBSA (Holness et al., 2014; Sink et al., 2019).

C7: Naturalness **Medium**
Justification
The estuary and nearshore are impacted, including notable infestation by alien plants around the estuary that persist in spite of rehabilitation efforts. Nevertheless, the estuary still provides many ecological services such as recruitment. There are significant impacts from coastal diamond mining in Namibia and, to a lesser extent, in South Africa (Sink et al., 2012; Holness et al., 2014). Although data are sparse, the area has been shown to be largely in fair condition (Sink et al., 2012; Holness et al., 2014), but there have been long-term declines in fish catch.

Status of submission
The Orange Cone EBSA was recognized as meeting EBSA criteria by the Conference of the Parties. The revised boundaries and description still need to be submitted to COP for approval.

COP Decision
dec-COP-12-DEC-22

End of proposed EBSA revised description.

Motivation for Revisions
Some updates were made to the description and references. One criterion rank, Importance for threatened species and habitats, was upgraded from Medium to High based on additional data and extension of the EBSA to include the Orange River Estuary, which is an important Ramsar site. Small additions, such as biodiversity information from OBIS were also made. A supplementary table of the
The biggest change to the EBSA was a significant refinement of the EBSA delineation. This was done to focus the EBSA more closely on the key biodiversity features that underpin its EBSA status. The delineation process included an initial stakeholder workshop, a technical mapping process and then an expert review workshop where boundary delineation options were finalised. The delineation process used a combination of Systematic Conservation Planning (SCP) and Multi-Criteria Analysis methods. The features used in the analysis were:

- Threatened Benthic and Coastal Ecosystems (Holness et al., 2014; Sink et al., 2012, 2019). The analysis focussed on the inclusion of the most threatened ecosystem types found in the area. These types are highlighted in the table in the Other relevant website address or attached documents section.
- The key muddy ecosystem types associated with the Orange Cone were identified based on data from new studies by Karenyi (2014) and Karenyi et al. (2016).
- Irreplaceable and near irreplaceable (i.e. very high selection frequency) sites, as well as primary and secondary focus areas identified in the SCP undertaken for the BCLME by Holness et al. (2014).
- Areas of high relative naturalness identified in the SCP undertaken for the BCLME by Holness et al. (2014).
- The Orange River Mouth Ramsar site was included (https://rsis.ramsar.org/ris/526).
- The coastal boundary was refined to be more accurate based on new data (Harris et al., 2019).

The multi-criteria analysis resulted in a value surface. The cut-off value (used to determine the extent of the EBSA) was based on expert input and quantitative analysis of effective inclusion of the above features. This entailed taking an iterative parameter calibration-based approach whereby the spatial efficiency of the inclusion of the targeted features was evaluated. The approach aimed to identify a cut-off that most efficiently included prioritised features while minimizing the inclusion of impacted areas. The final boundaries shown in the map below were validated in a series of national (in both South African and Namibia) and regional (BCC) meetings.
The revised Orange Cone EBSA boundary in relation to its original delineation.