Development of ecological sustainable fisheries practices in the Benguela Current Large Marine Ecosystem (ECOFISH)

Incorporation of stakeholders’ knowledge in data collection and analysis

Dr Barbara Paterson
Marine Research Institute
University of Cape Town
Case 1: Namibia – Hake
Case 2: Angola - Sardinella & horse mackerel

EAF

Ecological Wellbeing Human Wellbeing Ability to achieve

social & economic objectives and indicators

Fletcher et al. 2002, FAO 2005
• Shallow water hake *Merluccius capensis*

• Deep water hake *Merluccius paradoxus*

• Stocks declining (hake MP 2011, Kirchner 2010)

• Fishery not fulfilling economic expectations (Sherbourne 2010, Kirchner 2010)
Kirchner 2010
Outline

• Methods
• Brief history
• Results from interviews with fish plant workers
• Current knowledge gaps
• Results from LEK interviews with Fishers
• Conclusion
Approach and Methods
Local Knowledge in the Namibian hake fishery

Mixed Methodology:
• archival research
• interviews with
 – fish plant workers
 – trawl and longline skippers
 – fleet managers
 – factory managers
 ▪ audio recorded, transcribed and analysed (Nvivo)
Historic overview

- German colonial rule ends
- Small pelagic fishery established
- Distant water fleets arrive
- SA Factory vessels deployed
- ICSEAF has no Namibian participation
- UN revoke SA mandate
- Namibian Independence
- Rock lobster fishery collapses
- Hake population 50% reduced
- Small pelagic fishery collapses

(Paterson & Kirchner in prep.)
Post Independence Restructuring

- 1990 restructuring into a locally based fishery
- 200 mile EEZ
- Resource management focus on stock rebuilding
- Conservative catch limits soon increase

Source: Kirchner 2010
processing plant workers

22 plant workers from 3 hake processing plants participated conversations were held at the plants, audio recorded and transcribed
The current situation

- employment statistics are high, quality of employment is low
- resource depressed (Kirchner 2010)
- industry over-capacity (Kirchner 2010, Sherbourne 2010)
- Low resource rents & revenues (Kirchner 2010)
- ecosystem structure altered (Roux & Shannon 2004)
Knowledge gaps

• conflicting abundance estimates hide stock decline (van der Westhuizen 2001)

• Stock assessment
 – not species specific
 – cannot address effort creep

• Fish behaviour affects catchability
local ecological knowledge

• monitoring temperature (surface & bottom)
 – indicator to locate fish
 – indicator to predict fish movement
 – Influences quality of the catch

• Migration of hake in the water column
 – Vertical migration of M. capensis
 – Good night fishing in the deep (M. paradoxus)

• water colour
 – “the fish disappears but you get the same amount of monk, you get the same amount of soles, but the fish is gone”

• Wind direction & force
 – affects catchability (area specific differences)
 – Influences movement of hake

• Bycatch
 – Fishers are able to identify and map areas
Technological changes

• Lines are less noticeable to fish
• Length of longline doubled (9-15mi to 18-27mi)
• Number of fishing lines increased (320-400 to max 800)
• Use of swivels: 20% catch-rate increase
• Net openings increased (3.6m/4m – 12m)
“Some areas haven’t seen fish for quite a while .. so we’re passing through those areas without even wetting our nets“. (trawl skipper)
Different types of hake: trawlers

M. paradoxus
• “white hake”
• caught @ > 360m depth
• lighter and firmer flesh
• fewer blood clots
• easier to fillet
• less waste

M. capensis
• “black hake”
• caught @ 200-360m depth
• darker, softer flesh
• blood clots

“White fish” = hake
“White hake” = M. paradoxus
Different types of hake: longline

• White capensis
 – Preferred
 – Small head
 – Light colour
 – Prime quality
 – caught @ shallow parts of “the wall”

• Brown capensis
 – Similar to white capensis
 – Darker colour
 – caught @ deeper parts of “the wall” near Luderitz

• Black capensis
 – Dark fish
 – Long slender
 – Different length/weight ratio
 – Lesser quality
 – caught north of Walvis Bay

White, brown and dark capensis fetch different prices on the market
Conclusion

- Social & ecological goals should not compete
- We need to understand how the social & ecological parts interact
- Need to bring stakeholders to the table